skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wojciechowski, Ashley A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plant phenology is affected by both abiotic conditions (i.e., temperature, nitrogen enrichment, and drought) and biotic conditions (i.e., species diversity). The degree of spatial heterogeneity in soil resources is known to influence community assembly and dynamics, but the relationship between resource heterogeneity and phenology or the potentially interactive effects of soil resources on phenology are less understood. We leveraged a tallgrass prairie restoration experiment that has manipulated soil nitrogen availability and soil depth over 20 years to test the effects of environmental heterogeneity, nutrient enrichment, and potentially interactive effects of global change drivers (nutrient enrichment and a drought manipulation) on the phenology of a highly dominant prairie grass (Andropogon gerardii). We recorded the timing of major developmental stages ofA. gerardiiin plots containing four soil heterogeneity treatments (control, soil depth heterogeneity, nutrient/depth heterogeneity, and nutrient/precipitation heterogeneity). We found that the boot, first spikelet, and emerged spikelet stages ofA. gerardiioccurred earlier in treatments with greater heterogeneity of soil nitrogen, and this effect was driven by the accelerative effect of nitrogen enrichment on phenology. Reduced precipitation increased the flowering length ofA. gerardiibut did not otherwise affect developmental phenology. There were no interactive effects among any soil resource treatments on phenology. These results advance our understanding of the relationship between plant phenology and global change drivers, which is important for understanding and predicting the timing of plant resource use and the provision of resources to higher trophic levels by plants under varying levels of resource availability. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026